Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Understanding Oil Aging in Extended Drain Axle & Transmission Applications

2001-09-24
2001-01-3592
Extended drain of axle and transmission lubricants has gained wide acceptance in both passenger car and commercial vehicle applications. Understanding how the lubricant changes during extended drain operations is crucial in determining appropriate lubricants and drain intervals for these applications. A suitable aging screen test with an established relationship to field performance is essential. Over the years numerous methods have been studied (DKA, GFC, ISOT, ASTM L-60) with varying degrees of success1,2,3. Current methods tend to be overly severe in comparison to field experience, hence the need for further work in this area. As a result of recent work, a lubricant aging test method has been developed which shows good correlation with field experience, giving us an effective tool in the development of long drain oils.
Technical Paper

Understanding MTF Additive Effects on Synchroniser Friction - Part 2, Structure Performance Analysis

2012-09-10
2012-01-1668
Specific frictional properties are essential to provide correct and pleasurable shifting in a manual transmission. Synchroniser rings are being manufactured from an increasingly wider range of materials, and it is important to understand synchroniser-additive interactions in order to develop tailored lubricants that provide the desired frictional performance. This paper describes a study of the interaction of various friction modifier additives with a range of synchroniser materials in order to better understand the potential to develop lubricants that provide optimal frictional performance across a wide range of manual transmission-synchroniser systems.
Journal Article

Understanding MTF Additive Effects on Synchroniser Friction

2011-08-30
2011-01-2121
Specific frictional properties are essential to provide correct and pleasurable shifting in a manual transmission. Synchroniser rings are being manufactured from an increasingly wider range of materials, and so it is important to understand synchroniser-additive interactions in order to develop tailored lubricants that provide the desired frictional performance. This paper describes a study of the interaction of various friction modifier additives with a range of synchroniser materials in order to better understand the potential to develop lubricants that provide optimal frictional performance across a wide range of manual transmission-synchroniser systems. This presentation will outline the results of testing fluids with a range of synchroniser materials and will be followed by a future paper that will describe details of the fluids and analysis of their interactions with the different synchroniser surfaces.
Technical Paper

Unbiased Engine Test Evaluation

2000-06-19
2000-01-1960
In API engine oil licensing, candidate oils must meet the performance requirements of category defined engine tests. While API category engine tests are developed to target a theoretical performance standard, it is rare that the cost to test and approve oils is understood. Given that engine tests are an integral part of oil evaluation, understanding of engine test value is necessary. Therefore, measurements of value are presented as Unbiased Engine Test Evaluation (UETE). UETE evaluates an engine test's draw on time and money resources by estimating the average number of tests required before a candidate oil will pass the category defined engine tests. A pilot study using the API CH-4 Category is presented.
Technical Paper

Ultra Low Sulfur Diesel (ULSD) Sulfur Test Method Variability: A Statistical Analysis of Reproducibility from the 2005 US EPA ULSD Round-Robin Test Program

2006-10-16
2006-01-3360
Beginning June 1, 2006, 80% of the highway diesel fuel produced in the United States had to contain 15 ppm sulfur or less. To account for sulfur test method variability, the United States Environmental Protection Agency (US EPA) allowed a 2 ppm compliance margin, meaning that in an EPA enforcement action fuel measuring 17 ppm or less would still be deemed compliant since the true sulfur level could still be 15 ppm. Concern was voiced over the appropriateness of the 2 ppm compliance margin, citing recent American Society for Testing and Materials (ASTM) round-robin and crosscheck test program results that showed sulfur test lab-to-lab variability (reproducibility) on the order of 4 to 5 ppm depending on test method.
Technical Paper

Ultra Low Emissions and High Efficiency from an On-Highway Natural Gas Engine

1998-05-04
981394
Results from work focusing on the development of an ultra low emissions, high efficiency, natural gas-fueled heavy- duty engine are discussed in this paper. The engine under development was based on a John Deere 8.1L engine; this engine was significantly modified from its production configuration during the course of an engine optimization program funded by the National Renewable Energy Laboratory. Previous steady-state testing indicated that the modified engine would provide simultaneous reductions in nonmethane hydrocarbon emissions and fuel consumption while maintaining equivalent or lower NOx levels. Federal Test Procedure transient tests confirmed these expectations. Very low NOx emissions, averaging 1.0 g/bhp-hr over hot-start cycles, were attained; at these conditions, reductions in engine-out nonmethane hydro-carbons emissions (NMHC) were approximately 30 percent, and fuel consumption over the cycle was also reduced relative to the baseline.
Technical Paper

US 2010 Emissions Capable Camless Heavy-Duty On-Highway Natural Gas Engine

2007-07-23
2007-01-1930
The goal of this project was to demonstrate a low emissions, high efficiency heavy-duty on-highway natural gas engine. The emissions targets for this project are to demonstrate US 2010 emissions standards on the 13-mode steady state test. To meet this goal, a chemically correct combustion (stoichiometric) natural gas engine with exhaust gas recirculation (EGR) and a three way catalyst (TWC) was developed. In addition, a Sturman Industries, Inc. camless Hydraulic Valve Actuation (HVA) system was used to improve efficiency. A Volvo 11 liter diesel engine was converted to operate as a stoichiometric natural gas engine. Operating a natural gas engine with stoichiometric combustion allows for the effective use of a TWC, which can simultaneously oxidize hydrocarbons and carbon monoxide and reduce NOx. High conversion efficiencies are possible through proper control of air-fuel ratio.
Technical Paper

U.S. Army Investigation of Diesel Exhaust Emissions Using JP-8 Fuels with Varying Sulfur Content

1996-10-01
961981
Comparative emission measurements were made in two dynamometer-based diesel engines using protocol specified by the U.S. Environmental Protection Agency (EPA) and the California Air Resources Board (CARB). A single JP-8 fuel with a sulfur level of 0.06 weight percent (wt%) was adjusted to sulfur levels of 0.11 and 0.26 wt%. The emission characteristics of the three fuels were compared to the 1994 EPA certification low-sulfur diesel fuel (sulfur level equal to 0.035 wt%) in the Detroit Diesel Corporation (DDC) 1991 prototype Series 60 diesel engine and in the General Motors (GM) 6.2L diesel engine. Comparisons were made using the hot-start transient portion of the heavy-duty diesel engine Federal Test Procedure. Results from the Army study show that the gaseous emissions for the DDC Series 60 engine using kerosene-based JP-8 fuel are equivalent to values obtained with the 0.035 wt% sulfur EPA certification diesel fuel.
Technical Paper

Trends in Alternate Measures of Vehicle Fuel Economy

1986-10-01
861426
This paper develops and discusses the 1978-85 time trends in alternative measures of vehicle fuel economy. Nine alternative measures are presented ranging from ton-miles per gallon to menu-weighted performance adjusted miles per gallon. For each alternative measure, trends for important groups of manufacturers are presented. Ail of the trends in alternative measures are compared to the percent improvement implied by the original 1978 and 1985 passenger car average fuel economy standards (AFES).
Journal Article

Transmission Output Chain Spin Loss Study

2017-03-28
2017-01-1135
Transmission spin loss has significant influence on the vehicle fuel economy. Transmission output chain may contribute up to 10~15% of the total spin loss. However, the chain spin loss information is not well documented. An experimental study was carried out with several transmission output chains and simulated transmission environment in a testing box. The studies build the bases for the chain spin loss modeling and depicted the influences of the speed, the sprocket sizes, the oil levels, the viscosity, the temperatures and the baffle. The kriging method was employed for the parameter sensitivity study. A closed form of empirical model was developed. Good correlation was achieved.
Technical Paper

Transient Emissions from Two Natural Gas-Fueled Heavy-Duty Engines

1993-10-01
932819
The use of compressed natural gas as an alternative to conventional fuels has received a great deal of attention as a strategy for reducing air pollution from motor vehicles. In many cases, regulatory action has been taken to displace diesel fuel with natural gas in truck and bus applications. Emissions results of heavy-duty transient FTP testing of two Cummins L10-240G natural gas engines are presented. Regulated emissions of non-methane hydrocarbons, total hydrocarbons, CO, NOx, and particulate were characterized, along with emissions of formaldehyde. The effects of air/fuel ratio adjustments on these emissions were explored, as well as the effectiveness of catalytic aftertreatment in reducing exhaust emissions. Compared to typical heavy-duty diesel engine emissions, CNG-fueled engines using exhaust aftertreatment have great potential for meeting future exhaust emission standards, although in-use durability is unproven.
Technical Paper

Transient Control of a Dedicated EGR Engine

2016-04-05
2016-01-0616
Southwest Research Institute (SwRI) has successfully demonstrated the cooled EGR concept via the High Efficiency Dilute Gasoline Engine (HEDGE) consortium. Dilution of intake charge provides three significant benefits - (1) Better Cycle Efficiency (2) Knock Resistance and (3) Lower NOx/PM Emissions. But EGR dilution also poses challenges in terms of combustion stability, condensation and power density. The Dedicated EGR (D-EGR) concept brings back some of the stability lost due to EGR dilution by introducing reformates such as CO and H2 into the intake charge. Control of air, EGR, fuel, and ignition remains a challenge to realizing the aforementioned benefits without sacrificing performance and drivability. This paper addresses the DEGR solution from a controls standpoint. SwRI has been developing a unified framework for controlling a generic combustion engine (gasoline, diesel, dual-fuel natural gas etc.).
Technical Paper

Toxicologically Acceptable Levels of Methanol and Formaldehyde Emissions from Methanol-Fueled Vehicles

1984-10-01
841357
The increased interest in use of methanol makes it important to determine what levels of methanol and formaldehyde emissions may be acceptable. This paper reviews the available health data for methanol and formaldehyde to define what approximate ranges of concentrations, termed ranges of concern, could be acceptable from a toxicological viewpoint. Air quality models are then used to predict the in-use fleet average exhaust emission levels in localized situations (heavily impacted by mobile sources) corresponding to these ranges of concern. Using predicted fleet compositions, approximate target emission levels are given for the light-duty portion of the fleet which could yield these fleet averages. Finally, there is a brief summary of available methanol and formaldehyde emissions data from neat methanol-fueled vehicles which are compared to the target levels.
Technical Paper

Toward the Environmentally-Friendly Small Engine: Fuel, Lubricant, and Emission Measurement Issues

1991-11-01
911222
Small engines which are friendly toward the environment are needed all over the world, whether the need is expressed in terms of energy efficiency, useful engine life, health benefits for the user, or emission regulations enacted to protect a population or an ecologically-sensitive area. Progress toward the widespread application of lower-impact small engines is being made through engine design, matching of engine to equipment and task, aftertreatment technology, alternative and reformulated fuels, and improved lubricants. This paper describes three research and development projects, focused on the interrelationships of fuels, lubricants, and emissions in Otto-cycle engines, which were conducted by Southwest Research Institute. All the work reported was funded internally as part of a commitment to advance the state of small engine technology and thus enhance human utility.
Technical Paper

Tier 2 Intermediate Useful Life (50,000 Miles) and 4000 Mile Supplemental Federal Test Procedure (SFTP) Exhaust Emission Results for a NOx Adsorber and Diesel Particle Filter Equipped Light-Duty Diesel Vehicle

2005-04-11
2005-01-1755
Due to its high efficiency and superior durability the diesel engine is again becoming a prime candidate for future light-duty vehicle applications within the United States. While in Europe the overall diesel share exceeds 40%, the current diesel share in the U.S. is 1%. Despite the current situation and the very stringent Tier 2 emission standards, efforts are being made to introduce the diesel engine back into the U.S. market. In order to succeed, these vehicles have to comply with emissions standards over a 120,000 miles distance while maintaining their excellent fuel economy. The availability of technologies such as high-pressure common-rail fuel systems, low sulfur diesel fuel, NOx adsorber catalysts (NAC), and diesel particle filters (DPFs) allow the development of powertrain systems that have the potential to comply with the light-duty Tier 2 emission requirements. In support of this, the U.S.
Technical Paper

Three-Way Catalyst Technology for Off-Road Equipment Engines

1999-09-28
1999-01-3283
A project was conducted by Southwest Research Institute on behalf of the California Air Resources Board and the South Coast Air Quality Management District to demonstrate the technical feasibility of utilizing closed-loop three-way catalyst technology in off-road equipment applications. Five representative engines were selected, and baseline emission-tested using both gasoline and LPG. Emission reduction systems, employing three-way catalyst technology with electronic fuel control, were designed and installed on two of the engines. The engines were then installed in a fork lift and a pump system, and limited durability testing was performed. Results showed that low emission levels, easily meeting CARB's newly adopted large spark-ignited engine emission standards, could be achieved.
Technical Paper

Three-Point Belt Induced Injuries: A Comparison Between Laboratory Surrogates and Real World Accident Victims

1975-02-01
751141
Injuries produced by standard three point restraint systems with retractors will be compared between cadavers in laboratory simulated collisions at 30 mph barrier equivalent speed and lap and shoulder belted front seat occupants in real world frontal collisions of '73-'75 full sized cars. Tests conducted at SwRI with belted, unembalmed, fresh cadavers have resulted in extremely severe thoracic and cervical injuries, including multiple rib fractures, fractures of the sternum, clavicle and cervical vertebrae. On the other hand, injury data from a national accident investigation study to evaluate the effectiveness of restraints in late model passenger cars indicates that such injuries in real world crashes of equivalent severity are not always observed. The reasons possible for these differences are discussed. Both programs at SwRI are funded by the National Highway Traffic Safety Administration.
Technical Paper

The Use of Radioactive Tracer Technology to Measure Real-Time Wear in Engines and Other Mechanical Systems

2007-04-16
2007-01-1437
Radioactive tracer technology (RATT™) is an important tool for measuring real-time wear in operating engines and other mechanical systems. The use of this technology provides important wear information that is not available by other, more conventional wear measurement methods. The technology has advanced to the point where several components can be interrogated simultaneously, and new methods have extended the method to materials that are normally not amenable to radioactive tracer evaluation. In addition, sensitivity has increased so that the onset of wear can be detected long before practical with non-tracer methods. This improves the ability to measure and determine cause and effect relationships, thus providing a better understanding of wear responses to specific operating conditions and to changes in operating conditions. This paper reviews the radioactive tracer process and recent improvements that have extended its reach in both automotive and non-automotive applications.
Technical Paper

The Texas Diesel Fuels Project, Part 4: Fuel Consumption, Emissions, and Cost-Effectiveness of an Ultra-Low-Sulfur Diesel Fuel Compared to Conventional Diesel Fuels

2005-04-11
2005-01-1724
The Texas Department of Transportation (TxDOT) began using an ultra-low-sulfur, low aromatic, high cetane number diesel fuel (TxLED, Texas Low Emission Diesel) in June 2003. They initiated a simultaneous study of the effectiveness to reduce emissions and influence fuel economy of this fuel in comparison to 2D on-road diesel fuel used in both their on-road and off-road equipment. The study incorporated analyses for the fleet operated by the Association of General Contractors (AGC) in the Houston area. Some members of AGC use 2D off-road diesel in their equipment. One off-road engine, two single-axle dump trucks, and two tandem-axle dump trucks were tested. The equipment tested included newer electronically-controlled diesels. The off-road engine was tested over the TxDOT Telescoping Boom Excavator Cycle. The dump trucks were tested using the “route” technique over the TxDOT Single-Axle Dump Truck Cycle or the TxDOT Tandem-Axle Dump Truck Cycle.
Technical Paper

The Texas Diesel Fuels Project, Part 2: Comparisons of Fuel Consumption and Emissions for a Fuel/Water Emulsion and Conventional Diesel Fuels

2004-03-08
2004-01-0087
The Texas Department of Transportation began using an emulsified diesel fuel in 2002. They initiated a simultaneous study of the effectiveness of this fuel in comparison to 2D on-road diesel fuel and 2D off-road diesel. The study included comparisons of fuel economy and emissions for the emulsion, Lubrizol PuriNOx®, relative to conventional diesel fuels. Two engines and eight trucks, four single-axle dump trucks, and four tandem-axle dump trucks were tested. The equipment tested included both older mechanically-controlled diesels and newer electronically-controlled diesels. The two engines were tested over two different cycles that were developed specifically for this project. The dump trucks were tested using the “route” technique over one or the other of two chassis dynamometer cycles that were developed for this project In addition to fuel efficiency, emissions of NOx, PM, CO, and HCs were measured. Additionally, second-by-second results were obtained for NOx and HCs.
X